THE CHEMICAL COMPOSITIONS OF NINETEENTH-CENTURY COPPER-BASE ENGLISH JETONS

M. B. MITCHINER, C. MORTIMER and A. M. POLLARD

This paper, in which jetons are defined in the general Continental sense to mean die-stamped small metal discs without intrinsic monetary value, spans a period of fundamental change in the English brass-making industry. Traditional calamine brass gave way to spelter brass and the Birmingham brass houses became pre-eminent. These changes are reflected by the jetons themselves which are best studied in three roughly equal periods. All specimens were analysed by the X-ray fluorescence technique using the methods and standards described previously.¹

From c. 1790 to 1830

Three main alloys were popular during this period. Traditional calamine brass with a zinc content of 20 to 25 per cent was initially the preferred alloy, but this was to receive competition from brass made by Champion’s granulated copper process with its higher zinc content of 30 to 33 per cent. Alongside these brasses were the gilding metals which had low zinc contents in the general range of 4 to 7 per cent and were normally used for making planchets that were subsequently to be silver plated.

BIRMINGHAM FIRMS

Thomas Halliday: floruit 1797–1845/49²

School counters of Princess Charlotte type probably struck shortly after her death in 1817.

1. Obv. Diad. bust left: signed below – H
 H.R.H. THE. PRINCESS.CHARLOTTE – below: BORN.JAN.7.1796.DIED.NOV.6.1817
 Rev. In a frame within ornamental cartouche: 5 INTEGRERS
 (Hawkins 1975² no. 3005)
2. Obv. Diad. bust left: signed below – H
 H.R.H.THE.PRINCESS.CHARLOTTE
 Rev. Around rose: ONE.INTEGER: broad floral border
 (Hawkins 1975 no. 3004)

Signed jetons and medalets span this period and are accompanied by a much larger number of closely related unsigned pieces, probably mainly produced by the same firm.

'Napoleonic series of 1814—1815': a close-knit die-linked series.

3. Obv. Napoleon seated backwards on a cow being led by walking horned devil who pulls a halter around Napoleon’s neck: INSEPERABLE.FRIENDS – in ex: TO.ELBA
 Rev. around top: WE.CONQUER.TO.SET.FREE
 field: EMP./OF.RUSSIA/K.OF.PRUSIA/MARQUIS/WELLINGTON/PRINCE/
 SCHWARTZEN- /BERG
 bottom: MARCH.31.1814
 (Another jeton from the same obverse die has on the reverse the inscription in twelve lines ‘The liberties of Europe rest by the united efforts of England and her august allies. The preliminaries of peace signed May 30, 1814)

4. Obv. Bare head left: ALEXANDER.EMP.OF.ALL.THE.RUSSIAS
 Rev. same die as previous jeton.

5. Obv. Armed horseman galloping left: CROWN PRINCE.OF.ORANGE – HOLLANDS.GLORY
 Rev. In wreath: WATERLOO/JUNE.1815
 (Batty 1878, p. 508, no. 4964h)

‘Monarchs and famous persons series of 1820—1830’: an extensive series in which the present pieces probably emanate from the Kettle workshop. Another known manufacturer of related jetons was Ingram.

6. Obv. King’s bust left: H.M.G.M.KING.GEORGE.III
 Rev. BORN.JUNE 4.1738.CROWNED.OCTR.25.1760.DIED.JANY.29.1820.IN.THE.60.YEAR.
 OF.HIS.REIGN.AND.IN.THE.82.YEAR.OF.HIS.AGE.
 (Batty 1878, p. 421, nos. 4137a–f: the same incorrect reverse occurs on a related issues signed KETTLE–author and Batty 4137s–t. George III acceded when George II died on 22 Sept. 1760, but he was crowned on 27 Sept. 1761)

7. Obv. Bare headed bust left: FREDERICK.DUKE.OF.YORK
 Rev. Wreathed funerary urn on stand, inscribed: DIED/JANY.5th./1827
 around: BORN.AUGUST.16.1763 – THE.SOLDIERS.FRIEND
 (Batty 1878, p. 520 no. 5069c)

8. Obv. King’s bare head left: GEORGE.IV.KING.OF.GREAT.BRITAIN
 Rev. Laureate funerary urn on stand, inscribed: BORN.1762 / DIED.1830
 above: BELOVED.&.LAMENTED
 (Batty 1878, p. 436 no. 4236o)

Thomas Wells Ingram: floruit 1806–38

His work includes a number of signed card counters closely related to the present unsigned specimen depicting Edmond Hoyle, the ‘father of whist’. It was probably struck about 1830.

10. Obv. Man seated left playing cards, with ace of spades in raised hand: another ace on table: above:
 HOYLE
 Rev. In wreath: KEEP / YOUR / TEMPER

Coin forgery

This class of plated forgery (normally shillings) is commonly encountered and probably emanates from Birmingham. A recent hoard has been published by Hawkins.

11. George III halfcrown dated 1819
 (Mitchiner and Skinner 1985.8 no. 48)
12. Wyon: issued c.1790

Obv. Busts of king and queen right: GEORGIUS. III ET CHARLOTTE. REX ET REG.
Rev. Pair of outline hearts with crown above: PATRONS OF VIRTUE

(Brown,9 340; Fearon 1984,10 241.1; Batty 1884, p. 677 no. 2052)
Closely related jetons were signed by Wyon and dated 1790.

Anonymous: an East India Company recruiting ticket issued circa 1835

Obv. Armed mounted dragoon brandishing sword, galloping right: HORSE. ARTILLERY
Rev. Field: APPLY/AT/No.35/SOHO.SQUARE/LONDON
around: WANTED FOR THE EAST INDIES

(Bell 1975, p. 5; Pridmore 1975, p. 270 no. 398) See also Mitchiner 1979 no. 2106.

<table>
<thead>
<tr>
<th>Weight14</th>
<th>Cu</th>
<th>Zn</th>
<th>Sn</th>
<th>Pb</th>
<th>Ag</th>
<th>Ni</th>
<th>As</th>
<th>Sb</th>
<th>Fe</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIRMINGHAM</td>
<td></td>
</tr>
<tr>
<td>1. Halliday c. 1817/18</td>
<td>13.20</td>
<td>77.2</td>
<td>22.0</td>
<td>–</td>
<td>0.18</td>
<td>0.08</td>
<td>–</td>
<td>0.35</td>
<td>–</td>
<td>713</td>
</tr>
<tr>
<td>2. Halliday c. 1817/18</td>
<td>6.36</td>
<td>76.6</td>
<td>22.1</td>
<td>0.24</td>
<td>0.79</td>
<td>0.07</td>
<td>–</td>
<td>0.49</td>
<td>0.17</td>
<td>0.20</td>
</tr>
<tr>
<td>3. Kettle 1814</td>
<td>4.40</td>
<td>93.9</td>
<td>4.7</td>
<td>0.29</td>
<td>0.40</td>
<td>0.08</td>
<td>–</td>
<td>0.44</td>
<td>–</td>
<td>0.14</td>
</tr>
<tr>
<td>(die-link 4)</td>
<td>0.39</td>
<td>0.46</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Kettle (die-link 3) 1814</td>
<td>5.05</td>
<td>78.1</td>
<td>20.7</td>
<td>–</td>
<td>0.61</td>
<td>–</td>
<td>–</td>
<td>0.42</td>
<td>–</td>
<td>0.08</td>
</tr>
<tr>
<td>5. Kettle (silvered) 1815</td>
<td>3.95</td>
<td>94.0</td>
<td>5.0</td>
<td>–</td>
<td>0.30</td>
<td>0.28</td>
<td>–</td>
<td>tr</td>
<td>–</td>
<td>0.09</td>
</tr>
<tr>
<td>6. Kettle 1820</td>
<td>3.85</td>
<td>73.8</td>
<td>25.1</td>
<td>–</td>
<td>0.46</td>
<td>–</td>
<td>–</td>
<td>0.51</td>
<td>–</td>
<td>0.11</td>
</tr>
<tr>
<td>7. Kettle 1827</td>
<td>5.48</td>
<td>73.1</td>
<td>26.4</td>
<td>–</td>
<td>0.13</td>
<td>–</td>
<td>–</td>
<td>tr</td>
<td>–</td>
<td>0.10</td>
</tr>
<tr>
<td>8. Kettle 1830</td>
<td>5.45</td>
<td>69.1</td>
<td>30.4</td>
<td>–</td>
<td>0.09</td>
<td>0.13</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.15</td>
</tr>
<tr>
<td>9. Kettle 1830</td>
<td>5.70</td>
<td>67.0</td>
<td>32.2</td>
<td>–</td>
<td>0.26</td>
<td>0.09</td>
<td>–</td>
<td>0.37</td>
<td>–</td>
<td>0.07</td>
</tr>
<tr>
<td>10. Ingram firm c. 1830</td>
<td>4.15</td>
<td>92.4</td>
<td>6.6</td>
<td>–</td>
<td>0.41</td>
<td>–</td>
<td>tr</td>
<td>0.21</td>
<td>0.11</td>
<td>0.09</td>
</tr>
<tr>
<td>11. Coin forgery dated 1819</td>
<td>12.44</td>
<td>90.8</td>
<td>7.1</td>
<td>0.30</td>
<td>0.30</td>
<td>–</td>
<td>–</td>
<td>0.40</td>
<td>–</td>
<td>0.50</td>
</tr>
<tr>
<td>(silvered surface)</td>
<td></td>
</tr>
<tr>
<td>LONDON</td>
<td></td>
</tr>
<tr>
<td>12. Wyon c. 1790</td>
<td>2.60</td>
<td>78.5</td>
<td>20.1</td>
<td>0.43</td>
<td>0.23</td>
<td>–</td>
<td>–</td>
<td>0.52</td>
<td>0.18</td>
<td>–</td>
</tr>
<tr>
<td>13. East India Company c. 1835</td>
<td>5.20</td>
<td>76.2</td>
<td>22.5</td>
<td>–</td>
<td>0.53</td>
<td>0.09</td>
<td>–</td>
<td>0.27</td>
<td>0.13</td>
<td>0.11</td>
</tr>
</tbody>
</table>

Traditional calamine brass

Brass continued to be made in England by the traditional calamine process with zinc content in the range 20 to 25 per cent until well into the nineteenth century. Among items emanating from official numismatic circles one may make mention of a Royal Mint sovereign weight dated 1821 with a zinc content of 20.4 per cent.15 This quality of brass had a pedigree extending back through Nuremberg jetons,16 English seventeenth-century

14 Weights are cited in grammes. Standard chemical symbols are used for metals: Cu, copper; Zn, zinc; Sn, tin; Pb, lead; Ag, silver; Ni, nickel; As, arsenic; Sb, antimony; Fe, iron.
tokens and Charles I’s farthings (brass wedges), jetons of the Low Countries and medieval pilgrim badges to sundry Roman coins and badges.

The seven calamine brass jetons (medalets) in this section are among the latest English artefacts to have been made in traditional calamine brass. With the fall in zinc prices consequent upon increased exploitation of zinc ores and more active refining during the early nineteenth century spelter brass (i.e. metallic zinc directly alloyed with copper) undercut the price of calamine brass and the calamine process soon became obsolete.

Copper: 77.2, 76.6, 78.1, 73.8, 73.1, 78.5, 76.2 mean: 76.2 per cent (SD.2.1) per cent
Zinc: 22.0, 22.1, 20.7, 25.1, 26.4, 20.1, 22.5 mean: 22.7 per cent (SD.2.3) per cent
(The sum of copper plus zinc is close to 99 per cent in all cases.)

Brass made by the granulated copper process

Although the granulated copper process for raising the zinc content of calamine brass had been used on the Continent since 1560, the credit for using this process on a commercial scale in England belongs to Nehemiah Champion who obtained a patent in 1723. Using this process the zinc content of the resulting brass can be raised to a maximum value of 34 per cent.

 Only two of the present specimens belong in this category:
Copper: 69.1, 67.0 per cent mean: 68.1 per cent (SD.1.5)
Zinc: 30.4, 32.2 per cent mean: 31.3 per cent (SD.1.3)

Gilding brasses

The name gilding brass (gilding metal) is a general term for a group of low-zinc brasses that have been popular since the eighteenth century. In earlier times low-zinc brasses, more often known by the name latten, had been made by alloying down calamine brass. Due to volatalisation the zinc content was difficult to control and somewhat variable. The gilding metals were made by directly alloying metallic zinc with copper and had a more

...
reproducible composition. Tombac and pinchbeck, were two early European forms and paktong was a much earlier Chinese version. Metallic zinc had been imported from the Orient by the English and Dutch East India Companies since the seventeenth century and the metal was later refined in Europe. In England William Champion obtained his patent for refining zinc in 1738, but the metal remained expensive and could only be used commercially during ensuing decades for such low-zinc alloys as gilding metals. In 1781 Emerson took out a patent for making higher zinc spelter brass by direct mixing. Although in 1786 Watson praised his alloy as ‘the purest and finest brasses in the world’, it proved too expensive and Emerson was bankrupted in 1803.

Three of the present jetons, plus the coin forgery, are made of gilding metal and three of these are silver-plated. Several further jetons in the Kettle series have the appearance of gilding metal and are also silvered. The composition is:

Copper: 93.9, 94.0, 92.4, 90.8 per cent mean: 92.8 per cent (SD.1.5)
Zinc: 4.7, 5.0, 6.6, 7.1 per cent mean: 5.9 per cent (SD.1.2)
Plating: Ag + Sn (not analysed) (not plated) Ag, tr.Hg

The plating suggests that the Kettle firm was using a tin-containing silver wash. A similar situation has been observed in the case of some Nuremberg jetons (other, generally earlier, jetons only had a tin wash). The coin forgery suggests silver plating by the mercury amalgam technique, a process also suggested in the case of some medieval English coin forgeries and some other Nuremberg jetons.

From c.1830 to 1870

The increased scale of European zinc production in the early nineteenth century, combined with the easing of English import tariffs in 1830, made metallic zinc both cheaper and more plentiful. This turned the tide in favour of spelter brass and the phasing out of the calamine process. Cheadle (c. 1830) and Bristol (c. 1840) converted to the spelter process. The last recorded use of a calamine furnace in South Wales was in 1858 and in Birmingham the last calamine brass-house closed in 1866.

In the field of English jetons and related cheap small copper-base artefacts the period of transition from calamine brass to spelter brass was marked by a distinct preference for the use of low-zinc recipes. This does not imply any decline in the use of high-zinc alloys for other purposes; but it does suggest that during this transitional phase considerations of cost may have made the low-zinc brasses a better economic proposition in the field of cheap stamped metal discs. Be that as it may, there can be no doubt that by around 1870 the cost of spelter brass had fallen low enough to permit the mass production of ‘spade guinea’ jetons and related artefacts at little expense. These will be considered in the next section.

28 Described in 1786 by R. Watson, Chemical essays IV (London, 1786).
29 High zinc brasses which have a zinc content greater than 34 per cent attest the use of at least some metallic zinc in the brass-making process. This was first documented by Glauber in De Prosperitate Germaniæ (Amsterdam, 1656). Our analytical results attest the process from 1650 onwards, and have been discussed in Mitchiner, Mortimer and Pollard, ‘English seventeenth-century base metal coins and tokens’. Paten no. 564. R.F. Tylecote, A History of Metallurgy (London, 1976), p. 132; also J. Day, Bristol Brass.
30 Patent no. 1297.
31 Author’s collection (MBM): not analysed; some signed by Kettle.
32 Mitchiner, Mortimer and Pollard, ‘Nuremberg jetons’.
34 Mitchiner and Skinner, ‘Contemporary forgeries of English silver coins’.
35 Mitchiner, Mortimer and Pollard, ‘Nuremberg jetons’.
36 Note above; also Lones (1919).
37 Hamilton, English brass and copper industries to 1800.
Coronation medalets

These may have been made by either the Kettle or the Ingram firm, both of which had issued related signed pieces during the 1820s.

14. Obv. King's bare head right: WILLIAM IV. KGV. OF. GREAT. BRITAIN.
 in small letters above head: CROWNED, SEP. 8. 1831
 Rev. Queen's bust right: HER. MOST. GRACIOUS. MAJESTY. QUEEN. ADELAIDE
 (Batty 1878, p. 516 no. 5036)

15. Obv. Queen's diad. bust left: HER. MOST. GRACIOUS. MAJESTY. VICTORIA
 Rev. Crowned: above: BORN. MAY. 24. 1819
 below: CROWNED / JUNE. 28. 1838
 (Batty 1878, p. 501 no. 4911)

Card counters

16. Obv. Garter arms with half length lion and unicorn supporters: slightly faulty inscriptions:
 HONI. SOIT. QUI. MAL. P. Y and DIEU. ET. MON. DROT
 Rev. Field: KEEP YOUR / TEMPER around: BE. MODERATE. IN. YOUR. STAKES
 Issued during the 1840s or the early 1850s. For allied issues see Batty 1884 (p. 671 no. 1964)
 dated 1847, and Batty 1884 (p. 671 no. 1967) dated 1859: also Hawkins BNJ (1960), 178, for a
 note written in 1851, and Hawkins NC (1959) no. 59, dated 1846; Hawkins SCMB (1960), 98,
 dated 1848 and 1853.

17. Obv. Victoria's young head left: VICTORIA REGINA
 Rev. Fan of three playing cards: Jack of diamonds accosted by six of spades and five of clubs.
 (Batty 1884, p. 670 no. 1949: and see also Hawkins NC (1959), no. 5.)

18. Obv. Victoria's young head left: VICTORIA QUEEN OF GREAT BRITAIN
 Rev. same punch for the cards design, but struck on a smaller flan
 (Batty 1884, p. 670 no. 1953)
 These two issues can be dated to the 1850s, partly by succession from the 'Keep your temper'
 issues, and partly by comparison with related (and sometimes obverse die-linked) 'To
 Hanover' counters.

'To Hanover' counters: issued 1837 to c.1883

19. Obv. Victoria's young head left: VICTORIA REGINA
 Rev. Duke of Cumberland on horseback, with three-headed dragon below:
 above: TO. HANOVER - in ex. 1837 (traditional date)
 (cf. Hawkins, NC 1959), nos 1-4; issued 1837 - c. 1840s)

20. standard designs: H.M.G.M. QUEEN. VICTORIA: dated in reverse exergue 1854
 (Not listed by Hawkins: but cf. no. 24 dated 1859)

21. standard designs: VICTORIA. QUEEN. OF. GREAT. BRIT: dated below head 1862
 (Hawkins, NC 1959), no. 51

22. standard designs: H.M.G.M. QUEEN. VICTORIA: dated below head 1867
 (cf. Hawkins, NC 1959), nos 63-64)

23. same issue

Prince of Wales half sovereign counters: issued 1842 to 1870s

24. Obv. Victoria's young head left: VICTORIA QUEEN OF GREAT BRIT:
 Rev: Three plumes in crown: all in garter inscribed: HONI. SOIT. QUI. MAL. Y. PENSE
 (Magnay 1980, type 1: issued 1842–late 1840s)

25. Obv. Victoria's young head left: VICTORIA QUEEN OF GREAT BRITAIN: dated below head 1850
 Rev. Three plumes in crown: garter not inscribed: all crowned:
 margin: THE PRINCE. OF. WALES. MODEL. HALF. SOVRN.
 (Magnay 1980, type 6)

26. same designs, but dated 1854

CHEMICAL COMPOSITION OF NINETEENTH-CENTURY JETONS

Model coins of Joseph Moore

27. Bi-metallic model penny issued c.1847; with nickel-brass centre and copper rim.

Obv. Centre: Victoria’s young head left: VICTORIA.REG.
Rim: ONE PENNY - MODEL

Rev. Centre: 1
Rim: ONE PENNY - MODEL

<table>
<thead>
<tr>
<th>Weight</th>
<th>Cu</th>
<th>Zn</th>
<th>Sn</th>
<th>Pb</th>
<th>Ag</th>
<th>Ni</th>
<th>As</th>
<th>Sb</th>
<th>Fe</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Kettle/Ingram 1831</td>
<td>5.10</td>
<td>84.3</td>
<td>14.9</td>
<td>0.43</td>
<td>tr</td>
<td>0.10</td>
<td>0.11</td>
<td>0.09</td>
<td>548</td>
<td></td>
</tr>
<tr>
<td>15. Kettle 1838</td>
<td>3.62</td>
<td>68.2</td>
<td>30.8</td>
<td>0.44</td>
<td>tr</td>
<td>0.15</td>
<td>0.14</td>
<td>0.20</td>
<td>715</td>
<td></td>
</tr>
<tr>
<td>16. Card counter c. 1840s</td>
<td>2.28</td>
<td>83.8</td>
<td>15.4</td>
<td>0.21</td>
<td>tr</td>
<td>0.10</td>
<td>0.16</td>
<td>0.07</td>
<td>474</td>
<td></td>
</tr>
<tr>
<td>17. Card counter c. 1850s</td>
<td>2.90</td>
<td>85.9</td>
<td>13.2</td>
<td>0.24</td>
<td>0.10</td>
<td>0.21</td>
<td>0.20</td>
<td>725</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Card counter c. 1850s</td>
<td>2.19</td>
<td>84.1</td>
<td>14.7</td>
<td>0.20</td>
<td>0.15</td>
<td>0.44</td>
<td>0.14</td>
<td>726</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. ‘To Hanover’ c. 1840s</td>
<td>3.31</td>
<td>84.4</td>
<td>14.6</td>
<td>0.33</td>
<td>0.10</td>
<td>0.17</td>
<td>0.17</td>
<td>716</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. ‘To Hanover’ 1854</td>
<td>4.10</td>
<td>80.9</td>
<td>18.2</td>
<td>0.26</td>
<td>tr</td>
<td>0.20</td>
<td>0.22</td>
<td>0.17</td>
<td>718</td>
<td></td>
</tr>
<tr>
<td>21. ‘To Hanover’ 1862</td>
<td>5.68</td>
<td>88.5</td>
<td>10.5</td>
<td>0.24</td>
<td>0.20</td>
<td>0.05</td>
<td>tr</td>
<td>0.24</td>
<td>717</td>
<td></td>
</tr>
<tr>
<td>22. ‘To Hanover’ 1867</td>
<td>4.30</td>
<td>86.2</td>
<td>12.8</td>
<td>0.34</td>
<td>0.17</td>
<td>0.20</td>
<td>0.18</td>
<td>0.19</td>
<td>719</td>
<td></td>
</tr>
<tr>
<td>23. ‘To Hanover’ 1867</td>
<td>4.48</td>
<td>87.3</td>
<td>12.0</td>
<td>0.26</td>
<td>tr</td>
<td>0.20</td>
<td>0.22</td>
<td>0.20</td>
<td>720</td>
<td></td>
</tr>
<tr>
<td>24. ‘Prince of Wales’ c. 1840s</td>
<td>2.93</td>
<td>89.3</td>
<td>9.7</td>
<td>0.08</td>
<td>tr</td>
<td>0.36</td>
<td>0.32</td>
<td>0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25. ‘Prince of Wales’ 1850</td>
<td>2.20</td>
<td>84.5</td>
<td>13.6</td>
<td>0.24</td>
<td>0.55</td>
<td>tr</td>
<td>0.53</td>
<td>0.16</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>26. ‘Prince of Wales’ 1854</td>
<td>1.50</td>
<td>66.0</td>
<td>33.0</td>
<td>0.41</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>724</td>
<td></td>
</tr>
<tr>
<td>27. Joseph Moore: c. 1847 Rim</td>
<td>4.00</td>
<td>99.8</td>
<td></td>
<td>0.10</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>658</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Centre **43** ‘65’ ‘26’ ‘8.5’

Gilding brass

The preferred alloy was a form of gilding brass with a zinc content within the range 10 to 15 per cent. In colour these pieces range from brownish to yellowish and on this basis Hawkins described ‘To Hanover’ counters as being made of either copper or brass. But, in practice, one appears to be looking at a fairly narrow range of recipes that falls within the general category of gilding brasses.

Considered in the context of the mid nineteenth-century English technology it is likely that all these gilding brasses were made by the direct alloying of metallic zinc with metallic copper – the spelter process. Their mean composition is:-

Copper: 84.3, 83.8, 85.9, 84.1, 84.4, 88.5, 86.2, 87.3, 89.3, 84.5 per cent
mean: 85.8 per cent (SD. 2.0)

Zinc: 14.9, 15.4, 13.2, 14.7, 14.6, 10.5, 12.8, 12.0, 9.7, 13.6 per cent
mean: 13.1 per cent (SD. 2.0)

(The sum of copper plus zinc is very close to 99 per cent in all cases.)

Standard brasses

Only two jetons are made of good quality brass and a third specimen might just qualify. Jetons of 1838 and 1854 have a zinc content of 30.8 per cent and 33.6 per cent respectively. The former is probably made of calamine brass, continuing the traditional practices of the Kettle and the Ingram firms. The brass of the 1854 half sovereign counter might have been made by either the calamine or the spelter process. The alloy composition does not permit

43 The composition cannot be cited with precision because the nickel content is above the range of available standards.
differentiation between the two processes and historical information about the technical
traditions of the manufacturing firm is lacking. The third specimen is a ‘To Hanover’
counter made in 1854 with a zinc content of 18.2 per cent. In the context of kindred
counters its metal can probably be considered as spelter brass with a zinc content that is
higher than was usual for this kind of artefact.

Copper

The copper rim of Joseph Moore’s model penny has a higher purity than contemporary
English copper coinage. The difference is due to the significant arsenic content of the
coinage,44 and the lack of arsenic in the present piece. The high copper purity of Joseph
Moore’s model penny is more closely comparable with earlier (non-arsenic) copper jetons
struck in the Low Countries.45 But, Joseph Moore’s specimen was probably made of
copper refined in this country, though lacking the arsenic associated with coinage. The
South Wales copper refining industry grew up on the smelting of oxide-sulphide copper
ores mined in Cornwall and the end product was a characteristic arsenical copper.46
English copper and bronze coinage retained its arsenical nature until the eve of the First
World War,47 but in the meantime South Wales had been processing copper ores from
many new sources48 and producing refined copper free of arsenic. Present analytical results
suggest that non-arsenical copper was first produced during the mid nineteenth-century
transitional period and that it continued to be the norm thereafter. The continued
appearance of arsenic in copper and bronze coinage was probably intentional. A small
amount of arsenic hardens the copper49 and the addition of 0.5 per cent arsenic to refined
copper has been recommended:50 the intention in the present case was presumably to
enhance the durability of the coinage.

Nickel-brass

Nickel-bearing copper ores occur naturally in Germany and Austria,51 but were not
exploited as a natural alloy until the nineteenth century. Before that time these had been
shunned as low grade copper sources. From the 1820s some of this natural German alloy
was marketed and commonly acquired the name ‘German silver’.52 Nickel itself was not to
be produced in commercial quantities as a refined metal until around 1870.53 Joseph
Moore’s use of a natural nickel-brass alloy was not an isolated occurrence. Ralph Neal’s
market tallies, one of which is considered in the next section, probably provide another
example and likewise certain Belgian coins struck after 1832.54 In the Orient a comparable
alloy, paktong, had been in use for several centuries, including use for coins struck in the
medieval Sumatran kingdom of Srivijaya.55
After c.1870

By this time the spelter process of brass making had fully replaced the calamine process. Constraints placed on the zinc content of brass by the calamine technique were now removed and various recipes were tried in order to decide the optimal compositions for brasses destined for particular uses. Transition from malleable alpha brasses with a zinc content of not more than 37 per cent to brittle beta brasses with high zinc contents was found to place a practical maximum level of 40 per cent zinc (duplex brass) on any brasses that were to be used for making small die-stamped artefacts. The jetons described below show compositions ranging from the 90/10 recipe of gilding brasses up to the 60/40 recipe just discussed.

BIRMINGHAM FIRMS

Card counters

28. **Obv.** Fan composed of three playing cards: Ace of diamonds accosted by four of diamonds and five of diamonds

 Rev. Plain field with a narrow raised rim.

 (Batty 1884, p. 669 no. 1919)

29. **Obv.** Fan composed of three playing cards: King of clubs accosted by eight of diamonds and three of clubs

 Rev. Plain

 (Heart shaped) A number of related counters were published by Batty in 1884 and another of the author's specimens is dated 1871.

30. **Obv.** English arms in garter with lion and unicorn supporters: surmounted by lion on crown:

 Correct inscriptions - HONI.SORT.QUI.MAL.Y.PENS and DIEU.ET.MON.DROIT

 Rev. Shield of Paris with correct inscription: FLUCTUAT.NEC.MERGITUR: all in wreath

Late 'To Hanover' counters

31. Half-size issue bearing standard designs and VICTORIA.REGINA legend: but, with a two-headed dragon (cf. Hawkins, *NC* (1959); the two-headed dragon and small size are late features; see also Batty 1884, p. 658 no. 1713, dated 1867).

32. **Obv.** Diad. bust of George III: GEORGIUS.III.DEI.GRATIA

 Rev. Crowned shield as on spade guineas, with fictitious legend and date (as cited below)

32. **In.MEMORY.OF.THE.GOOD.OLD.DAYS** - 1768

 (Batty 1878, p. 416 no. 4135s-v: Hawkins, *BNJ*, 1963)

33. similar: dated 1788

34. similar: dated 1797

 (Batty 1876, p. 261 no. 2435e and 1878 p. 469 no. 4561a: Hawkins, *BNJ* (1963), no. 1)

36. Charles Peverelle, late M. Carroll, maker. Birmingham: he took over the firm in 1866.

 (Hawkins, *BNJ* (1963), no. 4: 'Charles Peverelle maker. Bir')

 (Hawkins, *BNJ* (1965), nos 9-13)

39. same issue

 'George Yorke Iliffe and Frederick Gardner (Rex) of Suffolk Street, die-sinkers, toolmakers, stampers, etc'. Iliffe and Gardner were in partnership from 1878 until 1881.

56 Discusses by West, *Copper and its alloys*; see particularly fig. 39, p. 103.

CHEMICAL COMPOSITION OF NINETEENTH-CENTURY JETONS

 (Hawkins, *BNJ* (1963), nos 29–32)

41. same issue and legend, but half size

42. J.W.REX.F.D.M.C.M.D.S.T.M.S.P.E.T.C - 1790
 (Hawkins, *BNJ* (1963), no. 34)

43. same issue, but with modified shield
 (Hawkins, *BNJ* (1963), no. 33)
 ‘John Wood (Rex fidei defensor), machine chain maker, die-sinker, toolmaker, stamper, piercer, etc’. His business was first cited in 1876 and last cited in 1900. His issues citing Joseph Rollason as partner were published by Batty in 1878 (p. 475 no. 4601a) and 1884 (p. 678 no. 2065).

 (Hawkins, *BNJ* (1963), no. 48)

‘Spade guinea’ counters: late issues

45. Crowned shield inscribed: WAYERLEY/NILE/PICKWICK/OWN/HINDOO/PENS
 margin: MACNIVEN & CAMERONS. PENS. ARE. THE. BEST
 inside margin: THEY. COME. AS. A. BOON – AND. BLESSING. TO. MEN

46. PLAY. WITH. ‘INTERNATIONAL SERIES’. GAMES

LONDON FIRMS

Market tallies of Ralph Neal

Ralph Neal signed his products and commonly included his address. From 1866 until 1895 he worked at 19 Percival Street, London EC and then moved to 49–50 Percival Street until the outbreak of war. Although he subsequently retained that address, the tallies catalogued below all appear to belong to the period before 1914 and issues struck for some stall-holders cite both the pre- and post-1895 addresses (see Hawkins, *SCMB* (1968), 170–171 and (1974), 77–79).

47. Struck for ‘KB’ of Billingsgate market: late 1890s
 Obv. Field: 15/BILLINGSGATE/2S./K B
 small letters: R.NEAL.49 & 50 – PERCIVAL.ST.EC
 Rev. Field: 2 S.
 small letters: R.NEAL – 19 PERCIVAL.ST.EC

48. Struck for John Gunn of Borough market: 1895–c.1914
 Obv. Field: plain; in small letters around: R.NEAL.49 & 50 – PERCIVAL.ST.EC
 margin: JOHN.W.GUNN – BORO,LONDON
 Rev. Field: 2/6
 small letters: NEAL – 49 & 50.PERCIVAL.ST.EC

49. Struck for P.C. Hegerty of Borough market: late 1890s
 Obv. Field: P.C. HEGERTY & CO/BORO/MKT
 small letters: R.NEAL.49 & 50 – PERCIVAL.ST.EC
 Rev. Field: 5/S. at sides: FIVE – SHILLINGS
 small letters: R.NEAL – PERCIVAL.ST.EC

50. *Obv.* as previous, probably the same die
 Rev. Field: 10 S. at top and bottom: TEN – SHILLINGS
 small letters: R.NEAL – MAKER
 Some obverse die-linked tallies of other denominations cite Neal’s earlier address at 19 Percival Street (e.g. 2/6).58 Tallies struck for Hegerty, Gunn and other customers were often made of different metals for different values.59

58 Author’s collection.
59 Most commonly copper, zinc, brass and nickel-brass. About the time of the First World War aluminium and galvanised iron were alternatively used.
CHEMICAL COMPOSITION OF NINETEENTH-CENTURY JETONS

Market tally of Hubbard and Walker
Made by Hubbard and Walker (fl. 1883–1921) for Matthew Proctor of Covent Garden market (Hawkins, SCMB (1968), p. 129).

<table>
<thead>
<tr>
<th>No.</th>
<th>Obv. Field:</th>
<th>Rev. Field:</th>
<th>Weight</th>
<th>Cu</th>
<th>Zn</th>
<th>Sn</th>
<th>Pb</th>
<th>Ag</th>
<th>Ni</th>
<th>As</th>
<th>Sb</th>
<th>Fe</th>
<th>Ref</th>
</tr>
</thead>
<tbody>
<tr>
<td>28.</td>
<td>Card counter</td>
<td>c. 1870s</td>
<td>2.05</td>
<td>62.1</td>
<td>37.2</td>
<td>-</td>
<td>0.59</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>727</td>
</tr>
<tr>
<td>29.</td>
<td>Card counter</td>
<td>c. 1870s</td>
<td>2.50</td>
<td>60.1</td>
<td>39.5</td>
<td>-</td>
<td>0.29</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>728</td>
</tr>
<tr>
<td>30.</td>
<td>‘To Hanover’</td>
<td>c. 1870s</td>
<td>1.72</td>
<td>67.1</td>
<td>32.4</td>
<td>-</td>
<td>0.26</td>
<td>-</td>
<td>tr</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>721</td>
</tr>
<tr>
<td>31.</td>
<td>‘Spade guinea’</td>
<td>c. 1870s</td>
<td>1.72</td>
<td>60.1</td>
<td>37.2</td>
<td>-</td>
<td>0.35</td>
<td>-</td>
<td>0.10</td>
<td>-</td>
<td>-</td>
<td>0.08</td>
<td>389</td>
</tr>
<tr>
<td>32.</td>
<td>Anonymous</td>
<td></td>
<td>2.22</td>
<td>83.2</td>
<td>15.8</td>
<td>-</td>
<td>0.22</td>
<td>-</td>
<td>-</td>
<td>0.21</td>
<td>0.17</td>
<td>0.11</td>
<td>X33</td>
</tr>
<tr>
<td>33.</td>
<td>Anonymous</td>
<td></td>
<td>1.93</td>
<td>64.7</td>
<td>33.8</td>
<td>0.34</td>
<td>0.67</td>
<td>-</td>
<td>-</td>
<td>0.10</td>
<td>0.15</td>
<td>-</td>
<td>X34</td>
</tr>
<tr>
<td>34.</td>
<td>Anonymous</td>
<td></td>
<td>3.99</td>
<td>63.1</td>
<td>35.7</td>
<td>-</td>
<td>0.54</td>
<td>0.10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.14</td>
<td>X35</td>
</tr>
<tr>
<td>35.</td>
<td>C. Peverelle</td>
<td></td>
<td>4.00</td>
<td>89.2</td>
<td>9.8</td>
<td>-</td>
<td>0.22</td>
<td>-</td>
<td>0.10</td>
<td>-</td>
<td>tr</td>
<td>-</td>
<td>729</td>
</tr>
<tr>
<td>36.</td>
<td>C. Peverelle</td>
<td></td>
<td>2.21</td>
<td>69.2</td>
<td>29.8</td>
<td>-</td>
<td>0.36</td>
<td>-</td>
<td>0.35</td>
<td>-</td>
<td>tr</td>
<td>-</td>
<td>731</td>
</tr>
<tr>
<td>37.</td>
<td>C. Peverelle</td>
<td></td>
<td>2.25</td>
<td>88.7</td>
<td>10.0</td>
<td>0.47</td>
<td>0.19</td>
<td>-</td>
<td>tr</td>
<td>tr</td>
<td>0.14</td>
<td>tr</td>
<td>730</td>
</tr>
<tr>
<td>38.</td>
<td>Iliffe and Gardner</td>
<td></td>
<td>3.32</td>
<td>83.4</td>
<td>16.1</td>
<td>-</td>
<td>0.10</td>
<td>0.05</td>
<td>0.15</td>
<td>0.07</td>
<td>0.09</td>
<td>0.22</td>
<td>583</td>
</tr>
<tr>
<td>39.</td>
<td>Iliffe and Gardner</td>
<td></td>
<td>3.50</td>
<td>82.0</td>
<td>17.5</td>
<td>-</td>
<td>0.17</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>732</td>
</tr>
<tr>
<td>40.</td>
<td>Nathaniel</td>
<td>Reading</td>
<td>3.50</td>
<td>62.1</td>
<td>37.2</td>
<td>-</td>
<td>0.76</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>733</td>
</tr>
<tr>
<td>41.</td>
<td>Nathaniel</td>
<td>Reading</td>
<td>1.87</td>
<td>63.2</td>
<td>36.1</td>
<td>-</td>
<td>0.37</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.23</td>
<td>734</td>
</tr>
<tr>
<td>42.</td>
<td>John Wood</td>
<td></td>
<td>2.70</td>
<td>61.9</td>
<td>37.6</td>
<td>-</td>
<td>0.38</td>
<td>-</td>
<td>tr</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>735</td>
</tr>
<tr>
<td>43.</td>
<td>John Wood</td>
<td></td>
<td>2.22</td>
<td>66.4</td>
<td>33.0</td>
<td>-</td>
<td>0.58</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.09</td>
<td>-</td>
<td>Z</td>
</tr>
<tr>
<td>44.</td>
<td>WCB</td>
<td></td>
<td>3.70</td>
<td>62.5</td>
<td>36.8</td>
<td>-</td>
<td>0.20</td>
<td>0.17</td>
<td>-</td>
<td>0.06</td>
<td>0.07</td>
<td>0.14</td>
<td>584</td>
</tr>
<tr>
<td>45.</td>
<td>Macniven and Cameron:</td>
<td></td>
<td>4.05</td>
<td>62.5</td>
<td>36.8</td>
<td>-</td>
<td>0.55</td>
<td>tr</td>
<td>-</td>
<td>-</td>
<td>tr</td>
<td>-</td>
<td>736</td>
</tr>
<tr>
<td>46.</td>
<td>International Games: c. 1920/39</td>
<td></td>
<td>4.50</td>
<td>65.9</td>
<td>33.4</td>
<td>-</td>
<td>0.36</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.11</td>
<td>630</td>
</tr>
</tbody>
</table>

Gilding brasses

Until the late 1870s there still appears to have been limited use of gilding brasses in the manufacture of jetons. All types of ‘spade guinea’ counters in this low-zinc alloy are known to have been produced by about 1880, either because they had already been published by Batty (nos 32, 35, 37), or else because the issuing partnership had been dissolved by that date (nos 38, 39).

Jetons made in this quality of brass show zinc contents in the same order as those of the previous period (10 to 15 per cent), with an emphasis on the higher end of this scale. This
quality of brass, being superior in corrosion resistance to plain copper, remains popular during the present century for such uses as bullet envelopes, plaques and name-plates, but it appears to have passed out of fashion in the field of jetons about 1880.

Commercial brass: 70/30 brass

This recipe was to become one of the most popular standards for general purpose brasses. During the First World War it was standardised by the British government as Cartridge Brass with a tolerance of 68 to 72 per cent copper (32–28 per cent zinc). Among present jetons one sees the emergence of the 70/30 recipe during the 1870s. It is a quality of spelter brass that bears comparison with the better grades of calamine brass that had been used earlier in the nineteenth century both in England and at Nuremberg.

60/40 brass

The 60/40 quality of brass first made its commercial appearance as ‘Munz metal’ during the 1830s for use in the sheathing of ships. But it proved too susceptible to corrosion and was soon replaced in this field by the more resistant Naval brass. In the field of jetons this high zinc brass enjoyed some popularity during the last quarter of the nineteenth century, but so far as one can judge from the fairly small number of observations the 60/40 quality of brass failed in competition against the generally more popular standard commercial brass (70/30 quality).

Conclusion

During the course of the nineteenth century English brass making passed through a fundamental metamorphosis when the calamine process gave way to the spelter process. This period of change is reflected in the chemical compositions of jetons and is divisible into three main phases. During the first third of the century traditional calamine brass appears to have retained its dominant role, with spelter brass only being used for low quality alloy of gilding metal quality. The middle third of the century was a period of transition during which good quality brass found little use in the field of jetons, probably because the calamine process was falling into disuse and the new spelter brass was still too expensive for such mundane items as jetons. These now tended to be made of low grade gilding brasses. During the last third of the century the production of spelter brass had expanded and the product had become cheaper, with the result that good quality spelter brass now came into general use for the manufacture of jetons.